距离论坛开幕还有:

2023年10月26-27日

中 国 • 成 都

中国油气行业未来的15项勘探开发技术

时间:2022-05-18 09:52 来源:石油论文 点击:

当今世界,能源转型步伐加快,新能源蓬勃发展。但到本世纪末,化石能源的主体地位不会改变,世界对于石油及天然气的消费需求依然巨大。经过近百年开采,全球油气勘探开发对象已经逐步地由常规转向非常规、由陆地转向海洋、由浅层深水转向深层深水。全球油气资源潜力依然巨大,但面临着一系列新形势和新挑战。

石油工业历史上的每一次跨越,几乎都得益于技术革命的推动,技术创新始终是世界石油工业发展进步的动力源泉。以智能化为代表的油气技术革命正拉开序幕。智能钻井、纳米驱油、原位改质等新一代勘探开发智能化技术体系正在形成,新一轮技术革命蓄势待发。那么,影响油气未来的潜力技术到底有哪些呢?

01 智慧地质

大数据、云计算、物联网等信息技术与地质勘探的融合发展,不断提升地质勘探的数字化水平。

展望未来,人工智能与地质研究的深度融合,将催生出智慧地质,实现由地质大数据向智慧地质的升级。智慧地质涉及地球的各个圈层,涉及地球形成与演化的历史,地球的物质组成及其变化,矿产资源的形成、勘查与开发利用,人类环境的破坏、修复和保护等。智慧地质为矿物学提供关于去哪里寻找和寻找什么的可视化线索,开创矿物学的全新方向。智慧地质在油气行业中,将更高效地圈定最具潜力的区域、储层和井位,提高探井成功率,促进增储上产。

02 智能油田

油气田开发已初步实现了数字化、网络化、自动化,并开始向着智能化的目标迈进。

智能油田是数字油田未来的发展方向,未来将以统一的数据智能分析控制平台为中心,无论固定资产、移动设备还是工作人员都将成为数据的收集者和接受者并直接同控制中心建立联系。智能控制中心结合人工智能、大数据、云计算等技术,通过分析海量的数据实时完成资源的合理调配、生产优化运行、故障判断、风险预警等,最终实现全部油田资产的智能化开发运营。

03 纳米智能驱油技术

纳米技术与提高采收率技术(EOR)融合集成,可解决传统EOR技术不能解决或难以解决的问题,如波及效率低、费用昂贵、苛刻环境下的不适应性及潜在的储层伤害等。

纳米智能驱油技术的研发思路是:纳米驱油剂“尺寸足够小”,能够基本实现全油藏波及;“强憎水强亲油”,遇水排斥,遇油亲和,具有自驱动力,能够实现智能找油;“分散油聚并”,能够捕集分散油,形成油墙或富油带并被驱出。纳米智能驱油技术有望成为提高采收率的战略接替技术,预期将大幅度提高最终采收率,具有广阔的应用前景。

04 井下油水分离技术

高含水是成熟油田面临的重大挑战之一,高含水油井开采过程中产液量高、含水率高,而且产液量与产油量成正比。为了增加产油量,一般采取大泵抽汲开采方式。这种方式所面临问题是巨大的油水日处理量导致开采成本上升,而污水处理也会带来潜在的环境问题。

井下油水分离技术是将油水混合物在井下直接分离,石油、天然气和剩余水被开采出地面,地面产出液大幅降低,含水率大幅下降,可极大缓解地面处理站油水处理压力,降低潜在的环境风险,是实现高含水油田经济稳定开发的有效措施之一。该技术正朝着结构小型化、功能集约化、管理智能化的方向发展,将开辟“井下工厂”开发新模式。

05 地下原位改质技术

地下原位改质是指通过对地下储层进行高温加热,将固体干酪根转换为轻质液态烃,再通过传统工艺将液态烃从地下开采出来的方法。

地下原位改质技术具有不受地质条件限制、地下转化轻质油、高采出程度、低污染等优点。壳牌公司地下原位改质技术采用小间距井下电加热器循序均匀地将地层加热到转化温度。该技术通过缓慢加热提升产出油气的质量,相对于其他工艺可以回收极深岩层中的页岩油,并减少地表污染,同时省去地下燃烧过程,减少对环境的危害。

06 高精准智能压裂

近年来,水平井分段压裂呈现压裂段数越来越多、支撑剂和压裂液用量越来越大的发展趋势。从长远看,实现压裂段数少、精、准,才是水力压裂技术的理想目标。目前业界在探索大数据、人工智能指导下的高精准压裂技术和布缝优化技术,但是真正能够“闻着气味”走的压裂技术还有待研究和突破。

07 浮式LNG装置(FLNG)

当前主流的浮式生产装置有四大类:FPSO、半潜式平台(Semi)、张力腿平台(TLP)和Spar(深吃水立柱式平台)。

经过数十年发展,浮式生产装置的相关技术已经成熟,并持续升级换代,TLP平台已发展到第3代,Spar平台已发展到第4代。这些浮式生产装置适合的油气生产模式是:海底生产系统+浮式生产装置+油气管道;海底生产系统+浮式生产装置+穿梭油轮。

08 海域天然气水合物安全高效低成本开发技术

全球海域天然气水合物资源量巨大,经过长期的技术研发,中国、日本等国已成功试采,未来十年将有越来越多的国家进行试采。中国、美国、日本、印度、英国等30多个国家都在大力开展技术攻关,以期实现天然气水合物的商业开采。商业开采海域天然气水合物面临的最大挑战一是成本问题,二是安全环保问题。

开采天然气水合物的井在海底以下的深度不会超过1000米,如用当今的大型浮式钻井装置(钻井船或半潜式钻井平台)及大型钻机,则实属大材小用,极不经济。因此,为降低钻井成本,必须应用成套的安全高效低成本技术装备,比如定制的小型浮式平台、复合连续管钻机、连续管钻井、复合材料隔水管等,甚至实施无隔水管钻井。天然气水合物的商业开采将开启一个崭新的时代——天然气水合物时代,届时天然气水合物将成为全球天然气产量的重要接替资源。

09 压缩感知地震勘探技术

陆上、海上同步震源混合采集快速发展,为地震采集降本增效奠定了基础,BP、斯伦贝谢、东方地球物理公司在同步震源混合采集方面取得了重大技术进展。

康菲公司在压缩感知地震采集、处理和成像方面进行了多项研究,并开发出了一套关键的集成技术系列,即压缩地震成像(CSI)技术,其中主要包括非规则优化采样(NUOS)技术、混源采集技术、数据重建技术等,并完成了商业应用。应用结果证明,CSI技术在满足处理、成像、AVO分析的基础上,大大提高了采集效率,缩短了施工周期。在阿拉斯加陆上可控震源地震勘探项目中,利用NUOS采样方法,克服了季节、环境的限制,大幅提高了采集效率,经过数据重建与数据处理,获得了高分辨率图像。

10 人工智能地震解释技术

地震解释的速度和精度在勘探工作流程中至关重要。传统的地震解释方法越来越难以应对海量的地震勘探数据。为此,国外已经有公司开始将机器学习应用于地震解释。

基于人工智能技术的地震解释,充分利用海量数据,通过大数据分析,大大缩短模型处理的时间,改善地震道属性的实时计算以及复杂地区盆地的视觉分析,获得更精确的地下信息,提高钻探成功率。

11 弹性波成像技术

使用弹性波方程延拓后得到的多分量波场包含纵波信息。弹性波成像技术作为基于弹性波理论的地震勘探技术的重要分支,是近些年地球物理领域研究重点。

弹性波成像技术目前仍处于理论研究阶段,近几年弹性波逆时偏移等研究不断深入。弹性波成像技术是改进弹性波全波形反演及成像的效果,为储层预测提供更加翔实的资料,并将推动基于弹性波理论的矢量地震勘探技术的发展。研发矢量信号处理、矢量噪声压制、纵横波联合初始速度建模等关键技术,改进弹性波全波形反演及成像的效果,实现九分量地震资料处理能力是今后研究重点。以三维弹性波正演为突破口,与高性能计算技术深度结合,可以大幅提升弹性波全波形反演和成像的效率与精度。

12 随钻前探/远探技术

随钻前探技术主要包括随地震前探技术和随钻方位电磁波前探技术两类,随钻声波前探技术尚处于研究阶段。

2016年斯伦贝谢推出的EMLA样机前探距离达到30米。随钻远探技术可以探测井筒周围数十米距离内的流体、油藏边界,提供随钻油藏描绘、地质导向功能。2015年斯伦贝谢推出GeoSphere服务,探测深度达30米,与包括SpectraSphere井下流体分析服务在内的整套随钻测井技术以及地表测井技术结合使用,可产生了一个真正的油藏结构与流体测绘图,有利于优化井位,最大化油藏接触,改善油田开发方案。2018年哈里伯顿推出的EarthStar服务,将探测距离提高到了61米。

13 光纤测井技术

光纤材料具有抗电磁干扰、抗环境噪声、电气绝缘性及自身安全性等特点,广泛应用于井下恶劣环境中的储层参数测量。用于油气井监测的光纤传感技术主要有:分布式温度传感、分布式应力传感和分布式声波传感,它们处于不同的发展阶段。

其中,分布式温度传感器最成熟,已经有近20年的井下应用历史。除分布式传感器,单点光纤温度和压力测量已经商业化应用,分布式压力传感器还处于开发阶段。未来的油气井检测将因光纤技术的进步而发生重大改变:在井的全生产周期内沿井筒进行连续测量,实现永久性监测;即使在恶劣环境下,也可以提供全面的井下生产数据;在不影响油气生产的前提下,降低探测气、水突破,识别套后窜流,探测泄漏,检测各种管柱及完井设备的完整性。

14 耐超高温井下仪器及工具

为应对井下高温高压,需要使用耐高温高压的井下仪器、工具和材料,比如MWD、LWD、近钻头地质导向仪、井下电池、钻头、钻井液、导向工具、固井水泥、井下管材、完井工具等等。随着技术的进步,井下工具、仪器、材料的耐温耐压能力持续提升。

例如,国外MWD/LWD、旋转导向钻井系统、螺杆钻具的最高耐温能力已分别达到200摄氏度、200摄氏度、230摄氏度,钻井液的最高耐温能力已达260摄氏度左右。未来十年,随着石墨烯等新材料的引入以及封装、冷却、绝缘等技术的发展,井下仪器、工具的耐温能力将整体超过230摄氏度,甚至有望达到300摄氏度,将有力推动深层超深层油气勘探开发和高温地热开发利用。

15 智能钻井

未来的智能钻井主要由智能钻机、井下智能导向钻井系统、现场智能控制平台、远程智能控制中心组成,它们构成一个有机的整体,实现闭环控制。

具有机器学习能力的智能钻台机器人和智能排管机器人将取代钻台工和井架工,实现钻井作业的少人化。司机也能从复杂的操作中解放出来,现场智能控制平台将代替司机完成所有操控,司机不必长时间坐在操作椅上,只是在一些特殊情况下才接管现场操作。地质导向、井下事故处理等关键作业,可由远程智能控制中心的智能控制平台完成,从而实现操作的远程化。